Caffeine Augments The Instruction of Anti-Inflammatory Macrophages by The Conditioned Medium of Mesenchymal Stem Cells
نویسندگان
چکیده
OBJECTIVES Mesenchymal stem cells (MSCs) have been shown to produce adenosine, express adenosine receptors, and communicate with macrophages and other cells. However, there is no information about the role of caffeine, as a popular drink and adenosine antagonist, on the crosstalk between MSCs and immune cells. The aim of the current study is to evaluate the effects of the conditioned medium of MSCs treated with caffeine on macrophages. MATERIALS AND METHODS In this experimental study, MSCs were isolated from bone marrow of rats and pulsed with different concentrations of caffeine (0, 0.1, 0.5 and 1 mM) for 72 hours. The conditioned medium of MSCs was collected after 24 hours, then incubated with macrophages for 24 hours. Finally, the functions of the macrophages were evaluated. RESULTS Conditioned medium of MSCs treated with caffeine significantly enhanced phagocytosis and simultaneously regressed expression of reactive oxygen species (ROS) and nitric oxide (NO) as well as IL-12 by macrophages compared to the supernatants of MSCs alone. The conditioned medium of MSCs pulsed with caffeine at low to moderate concentrations preserved the neutral red uptake by macrophages and elevated IL-10 secretion by macrophages. A high concentration of caffeine could interfere with the two latter effects of supernatants of MSCs on the macrophages. CONCLUSIONS Collectively, caffeine treatment of MSCs appeared to augment the instruction of anti-inflammatory macrophages by conditioned medium of MSCs. These findings might offer new insight into the potential mechanisms that underlie the immunomodulatory and anti-inflammatory effects of caffeine.
منابع مشابه
Evaluation of the brain tissue oxidative stress status during sepsis after mesenchymal stem cell\'s conditioned medium administration in male rats
Background: In the present study, we hypothesized that conditioned medium (CM) derived from mesenchymal stem cells attenuates the brain oxidative stress in sepsis induced by the cecal ligation and puncture (CLP) model. Methods: This study was performed in the Department of Physiology at Tehran University of Medical Sciences from August 2018 to April 2019. Conditioned medium was collected from ...
متن کاملThe effect of mesenchymal stem cell ‑conditioned medium on the proliferation of cancer cell lines, A549 and JEG3
Background: Cancer is a significant public health problem. Some studies indicated the anti-cancer effects of mesenchymal stem cells. These effects are related to stem cells or secretory mediator of them. The aim of this study was to evaluate the impact of condition medium of mesenchymal stem cells on A549 and JEG3 cancer cell lines. Methods: In an experimental study, A549 and JEG3 cell lines p...
متن کاملHypoxia Pre-Conditioned Embryonic Mesenchymal Stem Cell Secretome Reduces IL-10 Production by Peripheral Blood Mononuclear Cells
Background: Mesenchymal stem cells (MSCs) are important candidates for MSC-based cellular therapy. Current paradigm states that MSCs support local progenitor cells in damaged tissue through paracrine signaling. Therefore, study of paracrine effects and secretome of MSCs could lead to the appreciation of mechanisms and molecules associated with the therapeutic effects of these cells. This study ...
متن کاملCalcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions
Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet. The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...
متن کاملConditioned Medium from Cultured Colorectal Cancer Cells Affects Peripheral Blood Mononuclear Cells Inflammatory Phenotype in Vitro
Background: Colorectal cancer (CRC) is the third most common cancer worldwide. Studies have indicated that immune cells and soluble factors play a key role in maintaining the balance between tumor-promoting inflammation and anti-tumor immunity. It has been shown that secreted cytokines from CRC cell lines could affect peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages phenot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2017